Die Sektoren Strom und Mobilität zu verbinden, kann einige Herausforderungen der Energiewende bewältigen: Ökostrom ließe sich langfristig speichern, Kraftstoffe mit hoher Energiedichte wären CO2-neutral nutzbar. Wie Sektorenkopplung aussehen kann, haben Forschungspartner des Kopernikus-Projektes P2X nun auf dem Gelände des Karlsruher Instituts für Technologie (KIT) gezeigt und die ersten Liter Kraftstoff aus CO2, Wasser und Ökostrom produziert. Sie integrierten in einer containerbasierten Versuchsanlage erstmals alle vier benötigten chemischen Prozessschritte zu einem kontinuierlichen Verfahren mit maximaler Kohlendioxidausnutzung und besonders hoher Energieeffizienz.
„Wind und Sonne versorgen uns weltweit mit einer ausreichenden Menge an Energie, aber nicht immer zur richtigen Zeit“, beschreibt Prof. Roland Dittmeyer vom KIT, Koordinator des Forschungsclusters „Kohlenwasserstoffe und langkettige Alkohole“ innerhalb des Kopernikus-Projektes Power-to-X (P2X), das Dilemma der Energiewende. „Zudem brauchen einige wichtige Verkehrssegmente, wie Flug- oder Schwerlastverkehr, auch langfristig Kraftstoffe, da diese eine hohe Energiedichte aufweisen.“ Daher liege es nahe, den bisher ungenutzten Ökostrom in chemischen Energieträgern zu speichern.
Die notwendigen chemischen Prozessschritte haben nun die Partner Climeworks, Ineratec, Sunfire und KIT in einer kompakten Anlage zusammengeschlossen, den gekoppelten Betrieb erreicht und damit das Funktionsprinzip demonstriert. Die Technologiekombination verspricht die optimale Ausnutzung des eingesetzten Kohlendioxids und den größtmöglichen energetischen Wirkungsgrad, da die Stoff- und Energie-
ströme intern recycelt werden. Die derzeitige Versuchsanlage kann rund 10 l Kraftstoff pro Tag produzieren. In der zweiten Phase des Kopernikus-Projektes P2X wird bald eine Anlage mit 200 l/d entwickelt. Danach soll eine vorindustrielle Demonstrationsanlage im Megawattbereich, also mit einer Produktionskapazität von rund 1500 bis 2000 l/d, entstehen. Damit wäre es theoretisch möglich, Wirkungsgrade von rund 60 % zu
erreichen, also 60 % des eingesetzten Ökostroms als chemische Energie im Kraftstoff zu speichern.
Im ersten Schritt gewinnt die Anlage CO2 aus der Umgebungsluft in einem zyklischen Prozess. Die Direct-Air-Capture-Technologie von Climeworks, eines Spin-offs der ETH Zürich, nutzt dazu ein speziell behandeltes Filtermaterial. Wie ein Schwamm nehmen die luftdurchströmten Filter CO2-Moleküle auf. Unter Vakuum und bei 95 °C löst sich das anhaftende CO2 wieder von der Oberfläche und wird abgepumpt.
Im zweiten Schritt erfolgt die gleichzeitige elektrolytische Spaltung von CO2 und Wasserdampf. Diese sogenannte Co-Elektrolyse des Technologieunternehmens Sunfire produziert in einem einzigen Prozessschritt Wasserstoff und Kohlenstoffmonoxid (CO), ein Synthesegas, das die Grundlage für vielfältige Verfahren in der chemischen Industrie ist. Die Co-Elektrolyse mit einem hohen Wirkungsgrad kann im industriellen Maßstab 80 % des eingesetzten Ökostroms chemisch im Synthesegas binden.
Im dritten Schritt werden nach dem Fischer-Tropsch-Verfahren aus dem Synthesegas langkettige Kohlenwasserstoffmoleküle gebildet, die Rohprodukte für Kraftstoffe. Dazu liefert Ineratec, eine Ausgründung aus dem KIT, einen mikrostrukturierten Reaktor, der auf kleinstem Raum eine große Oberfläche bietet, um Prozesswärme sicher abzuleiten und für andere Prozessschritte zu nutzen. Der Prozess lässt sich auf diese Art leicht steuern, kann Lastwechsel gut verkraften und ist modular erweiterbar.
Der vierte Schritt optimiert schließlich die Qualität des Kraftstoffes und die Ausbeute. Diesen Teilprozess, das sogenannte Hydrocracken, hat das KIT in die Prozesskette integriert. Unter Wasserstoffatmosphäre spalten sich die langen Kohlenwasserstoffketten in Gegenwart eines Platin-Zeolith-Katalysators teilweise auf und verändern somit das Produktspektrum hin zu mehr verwendbaren Kraftstoffen wie Benzin, Kerosin und Diesel.
Besonders großes Potenzial bietet das Verfahren hinsichtlich seines modularen Charakters. Die Schwelle für eine Realisierung ist durch das geringe Skalierungsrisiko deutlich niedriger als bei einer zentralen, chemischen Großanlage. Das Verfahren kann dezentral installiert werden und ist somit dort einsetzbar, wo Solar-, Wind- oder Wasserkraft zur Verfügung stehen.
www.kopernikus-projekte.de www.climeworks.com www.sunfire.de www.ineratec.de