Springe auf Hauptinhalt Springe auf Hauptmenü Springe auf SiteSearch
Heizungswende

Wärmepumpen können mit KI effi­zien­ter be­trieben werden

Fraunhofer ISE

Wärme­pumpen können mit künst­licher Intelli­genz (KI) effi­zien­ter wer­den: Fehler­haf­te Ge­räte­ein­stel­lun­gen las­sen sich ver­mei­den und der Be­trieb opti­mie­ren.

Das Fraunhofer-Institut für Solare Energiesysteme ISE forscht an einer neuen Generation von intelligenten Wärmepumpen, die sich mithilfe von künstlichen neuronalen Netzen an ihre Umgebungsbedingungen anpassen, bei verändernden Bedingungen dazulernen und dadurch Energieeffizienz und Nutzerkomfort steigern.

Im Projekt „AI4HP“ hat Fraunhofer ISE gemeinsam mit Stiebel Eltron und den französischen Forschungspartnern CEA List (Laboratory for Integration of Systems and Technologies) und Laboratoire de Psychologie et NeuroCognition LPNC sowie dem Industriepartner EDF R&D wichtige Erkenntnisse über das Potenzial, die Flexibilität und Praxistauglichkeit von neuen adaptiven, auf neuronalen Netzen basierten Regelungsverfahren bei Wärmepumpen gesammelt.

Optimierungsziel Heizkurve

Bisher werden Wärmepumpen für den Heizbetrieb im Wohnbereich hauptsächlich mit Heizkurven geregelt, die bei der Installation fest eingestellt werden. Die Heizkurven sind jedoch in den meisten Fällen nicht optimal auf das jeweilige Gebäude abgestimmt, was nur durch eine zeitaufwendige Kalibrierung erreicht werden könnte. Zudem berücksichtigen Heizkurven weder kurz- noch langfristige Veränderungen wie die Sonneneinstrahlung, die tatsächliche Nutzung sowie die Alterung oder Renovierung des Gebäudes. Das spezifische Verhalten eines Gebäudes, wie es sich beispielsweise unter Sonneneinstrahlung verhält, kann künstliche Intelligenz durch die Analyse kontinuierlich erfasster Messwerte lernen.

Wichtige Prämissen für den Einsatz von KI zur Steuerung von Wärmepumpen: „KI-Methoden müssen robuster und skalierbarer werden, um kostengünstig in einer Vielzahl unterschiedlicher Gebäude implementiert werden zu können“, sagt Dr. Lilli Frison, Projektleiterin am Fraunhofer ISE. „Darüber hinaus werden nur zuverlässige und vertrauenswürdige Methoden, die einen sicheren Betrieb gewährleisten, von Wärmepumpenherstellern und ihren Kunden akzeptiert“, ergänzt ihr Kollege Simon Gölzhäuser.

Neuronales Netz für thermisches Gebäudeverhalten

Selbstlernende Wärmepumpenregelung mit KI-Systemmodell.

Fraunhofer ISE

Selbstlernende Wärmepumpenregelung mit KI-Systemmodell.

Künstliche neuronale Netze sind aufgrund ihrer Fähigkeit, komplexe und hochgradig nicht-lineare Zusammenhänge sehr genau abbilden zu können, für diesen Zweck geeignet. Im Rahmen des Projekts hat das Forschungsteam ein neuronales Netz basierend auf Konzepten zur Zeitreihenvorhersage entwickelt. Die auf der neuartigen Transformer-Architektur aufbauende Grundstruktur befähigt das Netzwerk, historische und zukünftige Input-Daten zu verknüpfen.

Mit dieser Architektur kann der zeitliche Verlauf der Raumtemperatur abgeschätzt werden. Der entwickelte intelligente Wärmepumpenregler verwendet ein künstliches neuronales Netz als digitale Abbildung des thermischen Gebäudeverhaltens zusammen mit einem echtzeitfähigen Optimierungsalgorithmus, um die Vorlauftemperatur der Wärmepumpe optimal zu regeln.

Feldtest bestätigt positive Simulationsergebnisse

Der neue KI-Wärmepumpenregler wurde in umfangreichen Simulationstests evaluiert, bei denen drei verschiedene Gebäude aus unterschiedlichen Baujahren und mit verschiedenen energetischen Sanierungszuständen jeweils für eine Heizsaison simuliert wurden. Beide Fragestellungen, sowohl bezüglich der Selbstkalibrierung als auch der Anpassung an neue Umgebungsbedingungen, konnten positiv beantwortet werden.

Je nach Gebäude zeigen die Ergebnisse eine signifikante Energieeinsparung von durchschnittlich 13 % im Vergleich zur standardmäßig eingestellten Heizkurve. Diese Einsparung wird insbesondere durch eine bessere Übereinstimmung der Referenzraumtemperatur mit der Solltemperatur erreicht. Eine weitere Energieeinsparung ist zu erwarten, wenn der Regler so erweitert wird, dass auch die Effizienz-Charakteristik der Wärmepumpe einbezogen wird.

Zudem bestätigte ein erster Feldtest in einem realen Gebäude die Funktionalität des Heizkurvenreglers. Der einwöchige Testbetrieb zeigte, dass die Solltemperatur deutlich besser erreicht wird (mittlere Abweichung verringert sich um mehr als die Hälfte) und der COP (Coefficient of Performance) sich deutlich verbesserte:

Gegenüber dem Vergleichszeitraum konnte der KI-Regler eine COP-Steigerung von 25 % verzeichnen, wobei dies in weiteren längeren Monitoring-Feldtestreihen mit unterschiedlichen Gebäudetypen noch evaluiert werden muss. Zudem führte der Algorithmus bereits nach einigen Tagen zu stabilen Heizkurvenparametern, die auf das Gebäude optimiert sind und somit auch eine Effizienzsteigerung bei einem herkömmlichen Heizkurvenbetrieb ermöglichen. Trotz dieses großen Potenzials zeigte die Erfahrung aus dem Feldtest auch, dass eine gute Leistung des neuen Reglers hohe Anforderungen an die Genauigkeit des KI-Gebäudemodells stellt.

Optimierungspotenzial auch bei der Trinkwassererwärmung

Die französischen Projektpartner innerhalb des Projektkonsortiums konzentrierten sich auf den optimierten Betrieb von Trinkwasser-Wärmepumpen. Der intelligente Algorithmus für die Betriebsoptimierung wurde in einer Klimakammer im Rahmen eines Hardware-in-the-Loop-Laborversuchs anhand einer echten Wärmepumpe und eines realen Verbrauchsprofils getestet. Die Ergebnisse lassen den Schluss zu, dass die KI-Vorhersage in Verbindung mit einer optimierten Steuerung der Wärmepumpe das Potenzial hat, den Stromverbrauch für die Trinkwassererwärmung um bis zu 8 % zu senken. ■
Quelle: Fraunhofer ISE / jv

Gute Ideen für den Wärmepumpenhochlauf

Im Kontext:
Heizenergiekosten: Wärmepumpenstrom-/Gaspreis-Barometer
Die Wärmepumpe ist mehr als nur eine Heizung
2024-09: Wärmepumpen dominieren den Neubau immer stärker
Wie viel darf die JAZ-Optimierung einer Wärmepumpe kosten?
Wärmepumpen können Stromnetz mit Flexibilität unterstützen